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Abstract
Karaoke is a system for low-latency metadata-private
communication. Karaoke provides differential privacy
guarantees, and scales better with the number of users
than prior such systems (Vuvuzela and Stadium). Karaoke
achieves high performance by addressing two challenges
faced by prior systems. The first is that differential pri-
vacy requires continuously adding noise messages, which
leads to high overheads. Karaoke avoids this using opti-
mistic indistinguishability: in the common case, Karaoke
reveals no information to the adversary, and Karaoke
clients can detect precisely when information may be re-
vealed (thus requiring less noise). The second challenge
lies in generating sufficient noise in a distributed system
where some nodes may be malicious. Prior work either
required each server to generate enough noise on its own,
or used expensive verifiable shuffles to prevent any mes-
sage loss. Karaoke achieves high performance using
efficient noise verification, generating noise across many
servers and using Bloom filters to efficiently check if any
noise messages have been discarded. These techniques
allow our prototype of Karaoke to achieve a latency of
6.8 seconds for 2M users. Overall, Karaoke’s latency is
5× to 10× better than Vuvuzela and Stadium.

1 Introduction
Text messaging systems are often vulnerable to traffic
analysis, which reveals communication patterns like who
is communicating with whom. Hiding this information
can be important for some users, such as journalists and
whistleblowers. However, building a messaging system
just for whistleblowers is not a good idea, because us-
ing this system would be a clear indication of who is a
whistleblower [9]. Thus, it is important to build metadata-
private messaging systems that can support a large num-
ber of users with acceptable performance, so as to pro-
vide “cover” for sensitive use cases.

A significant limitation of prior work, such as Vu-
vuzela [27], Pung [1], and Stadium [26], is that they in-
cur high latency. For example, with 2 million connected
users, Vuvuzela has an end-to-end latency of 55 seconds,
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and the latencies of Pung and Stadium are even higher.
Such high latencies hinder the adoption of these designs.

This paper presents Karaoke, a metadata-private mes-
saging system that reduces latency by an order of mag-
nitude compared to prior work. For instance, Karaoke
achieves an end-to-end latency of 6.8 seconds for 2 mil-
lion connected users on 100 servers (on Amazon EC2
with simulated 100 msec round-trip latency between
servers), 80% of which are assumed to be honest, and
achieves differential privacy guarantees comparable to
Vuvuzela and Stadium. Furthermore, Karaoke can main-
tain low latency even as the number of users grows, by
scaling horizontally (i.e., having independent organiza-
tions contribute more servers). Karaoke supports 16 mil-
lion users with 28 seconds of latency, a 10× improvement
over Stadium.

Achieving high performance requires Karaoke to ad-
dress two challenges. The first challenge is that differ-
ential privacy typically requires adding noise to limit
data leakage. Prior work achieves differential privacy
for private messaging by enumerating what metadata an
adversary could observe (e.g., the number of messages
exchanged in a round of communication), and adding
fake messages (“noise”) that are mixed with real mes-
sages to obscure this information. This translates into a
large number of noise messages that have to be added
every round, and handling these noise messages incurs a
high performance cost.

Karaoke addresses this challenge using optimistic
indistinguishability. Karaoke’s design avoids leaking in-
formation in the common case, when there are no active
attacks. Karaoke further ensures that clients can precisely
detect whether any information was leaked (e.g., due to
an active attack), so that the clients can stop communicat-
ing to avoid leaking more data. This allows Karaoke to
add fewer noise messages, because the noise messages
need to mask fewer message exchanges (namely, just
those where an active attack has occurred).

The second challenge lies in generating the noise
in the presence of malicious servers. One approach is
to require every server to generate all of the noise on
its own, under the assumption that every other server
is malicious [27]. This scheme leads to an overwhelm-
ing number of noise messages as the number of servers
grows. Another approach is to distribute noise genera-
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tion across many servers. However, a malicious server
might drop the noise messages before they are mixed
with messages from legitimate users. As a result, achiev-
ing privacy requires the use of expensive zero-knowledge
proofs (e.g., verifiable shuffles) to ensure that an adver-
sary cannot drop messages [26]. This approach reduces
the number of noise messages, but leads to significant
CPU overheads due to cryptography.

Karaoke’s insight is that verifiable shuffles are overkill:
it is not necessary for all messages to be preserved, and
it is not necessary to prove this fact to arbitrary servers.
Instead, to achieve privacy, it suffices for each server
to ensure that its noise is observed by all other servers.
This can be done efficiently using Bloom filters, without
having to reveal which messages are noise and which
messages come from real users.

The contributions of this paper are as follows:
• The design of Karaoke, a metadata-private text mes-

saging system that achieves an order of magnitude
lower latency than prior work.

• Two techniques, optimistic indistinguishability and
efficient noise verification, which allow Karaoke to
achieve high performance.

• A privacy analysis of Karaoke’s design that supports
the use of these techniques.

• An experimental evaluation of a prototype of Karaoke.
One limitation of Karaoke is that it does not provide

fault tolerance, since it requires all servers to be online.
Handling server outages and denial-of-service attacks is
an interesting direction for future work.

2 Related work
In this section, we compare Karaoke to prior work in
two dimensions: privacy guarantees and the trade-off
between scalability and server trust assumptions.

2.1 Privacy guarantees
Karaoke considers adversaries that control network links
and some of the system’s servers. This attacker model
rules out systems based on Tor [7] such as Ricochet [3],
due to traffic analysis attacks [5, 11, 18]. Loopix [20] is a
recent system that delays messages and uses entropy [24]
as a metric for reasoning about a user’s anonymity set.
However, Loopix does not provide any formal guaran-
tees about privacy after users exchange multiple mes-
sages; it also requires users to trust a designated service
provider [20: Table 1].

Some systems leak no information to the attacker, us-
ing techniques like DC-nets [29], Private Information Re-
trieval [1], or message broadcast [4]. Such systems pro-
vide the strongest form of privacy that users could hope
for, but due to the quadratic overhead of these schemes

in the number of users, their latency becomes high when
supporting millions of users.

Karaoke achieves differential privacy for metadata-
private messaging, much like Vuvuzela [27], Alpenhorn [15],
and Stadium [26]. One key difference in Karaoke is that
its design leaks no information about a user’s traffic pat-
terns in the common case, when there are no lost mes-
sages, using the idea of optimistic indistinguishability.
This allows Karaoke to add less noise for reaching the
same privacy level as prior work [15, 26, 27], which
improves performance.

Like Stadium, Karaoke is distributed over many ma-
chines, and must ensure that malicious servers do not
compromise privacy. Stadium uses zero-knowledge proofs
(e.g., verifiable shuffles) for this purpose, whereas Karaoke
relies on more efficient Bloom filter checks.

2.2 Scalability vs. trust assumptions
Systems that assume the anytrust model (where all but
one server may be malicious), such as Vuvuzela [27], Dis-
sent [29], and Riposte [4], do not scale horizontally and
cannot support the same magnitude of users as Karaoke.

One approach to horizontal scalability in metadata
private messaging systems is to route messages through
only a subset of all servers in the network, as in Loopix,
Stadium, and Atom [14]. This requires trusting multiple
servers to be honest, and introduces a tradeoff between
the number of trusted servers (translating into the number
of servers that process each message) and performance.

In Loopix every message is processed by a small num-
ber of servers (e.g., Loopix considers 3 or more servers
to be a good choice [20: §4.3.1]). For privacy, Loopix
requires that one of these servers is honest. However, if
a significant fraction of servers are malicious, using a
small number of servers means some users’ messages
will not be processed by any honest server. Karaoke en-
sures privacy with high probability by sending messages
through more servers (e.g., 14 servers).

Atom [14] assumes that a fraction of the servers
might be corrupt, and requires each message to be pro-
cessed by many servers (hundreds). This leads to high
latency, from 30 minutes to several hours. Karaoke
also assumes that some fraction of servers are malicious.
However it arranges its servers in a different, full-mesh
topology, which allows it to achieve privacy while pro-
cessing each message at fewer servers (e.g., 14 servers).

3 Overview
Figure 1 shows the main components of Karaoke. At
the highest level, Karaoke consists of users, servers, and
dead drops, similar to Vuvuzela and Stadium. All com-
munication in Karaoke happens in rounds. In each round,
users communicate by sending and receiving messages
to and from dead drops. A dead drop is a designated
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Figure 1: Overview of Karaoke’s design.

location used to exchange messages. Dead drops are
named by the server on which they are located, along
with a pseudorandom identifier, and are not reused across
rounds. When two users access the same dead drop, their
messages are exchanged, and each user receives the other
user’s message. When two users want to communicate,
they arrange to access the same dead drop (based on a
shared secret). If a user is not communicating with any-
one, he or she sends cover traffic to a randomly chosen
dead drop.

The middle of the figure shows Karaoke’s servers,
labeled 1 through N, which are used to shuffle messages
in order to hide information about which user is accessing
which dead drop. The servers shuffle messages in layers,
which are indicated by vertical groups in Figure 1, similar
to a parallel mixnet [6, 8, 12, 21]. Each layer decrypts
the messages (which are onion-encrypted) and re-orders
them, so that the order of messages sent by a server
does not correlate with the order in which the messages
were received. Each server takes part in each layer; the
figure depicts this by including each server in each layer.
Between layers, servers exchange messages with one
another.

The path of a message through the layers is chosen
by the message sender at random. The message is onion-
encrypted using the public keys of the servers on the
chosen path, so that the message cannot be decrypted
unless it passes through those servers. This ensures that
an adversary cannot bypass the shuffling of the honest
servers on the path of a message. Karaoke assumes that
users know the public keys of all servers.

In Figure 1, Alice and Bob are communicating in a
particular round. Their dead drop access paths are shown
using bold arrows; solid for Alice and dashed for Bob.
Alice and Bob send their messages to the same dead drop
B on server 2. When the messages arrive at server 2,
the server swaps them, and sends them back through the
layers: Alice’s message back to Bob along the reverse
of the dashed arrows, and Bob’s message back to Alice
along the reverse of the solid arrows. This ensures server
2 does not know whose messages it swapped.

3.1 Goals and threat model
Karaoke’s goal is to hide the communication patterns be-
tween users, so that an adversary cannot determine which
users are communicating with one another. Karaoke
does not hide information about which users are using
Karaoke; an adversary can determine that a user is using
Karaoke by observing a connection to one of Karaoke’s
servers. However, we hope that supporting a large num-
ber of users makes the mere act of using Karaoke less
suspicious, similar to the argument by Dingledine et
al. [7]. Karaoke also does not make availability guar-
antees; defending against DoS attacks is an interesting
direction for future work.

In addition to Karaoke’s privacy goals, Karaoke aims
to achieve low latency for many users. This is important
in order to enable broad adoption of Karaoke’s design.
Furthermore, Karaoke’s goal is to provide horizontal
scalability, so that Karaoke’s operators can scale to more
users over time by adding physical machines, thereby
spreading the CPU and bandwidth requirements for oper-
ating Karaoke across more servers.

Karaoke assumes that an adversary has full control
over the network and has compromised some number
of servers and users’ computers. Karaoke assumes that
some fraction of servers (e.g., 80%) remains honest (not
compromised), which we believe is achievable given
leaked documents [19] and measurements of the Tor net-
work [23, 28]. Karaoke hides communication patterns
between users whose computers have not been compro-
mised. If an adversary compromises a user’s computer,
the adversary can directly observe that user’s activity, and
Karaoke cannot provide any privacy guarantees. Karaoke
makes standard cryptographic assumptions (the adver-
sary cannot break cryptographic primitives), and assumes
that Karaoke clients know the public keys of Karaoke
servers.

We capture Karaoke’s goal of hiding communica-
tion patterns using differential privacy [10], as in Vu-
vuzela and Stadium. Specifically, for a pair of users (call
them Alice and Bob), Karaoke considers the probabil-
ities of the observations that an adversary could make
(e.g., observations of network traffic and observations
from compromised servers), conditioned on Alice and
Bob communicating or not communicating. Karaoke’s
differential privacy guarantee says that the probabilities
of Alice and Bob communicating or not communicating,
based on what the adversary observed, are close, and
the ϵ and δ parameters control the degree of closeness
(eϵ is a multiplicative factor and δ is an additive factor).
The choice of the parameters is discussed in §6.1. Using
differential privacy, Karaoke ensures that two users can
always plausibly deny that they were communicating.

Since differential privacy is composable, a user can
leverage this guarantee to reason about other plausible
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“cover stories.” For example, if Alice was actually talk-
ing to Bob, she could instead claim she was talking to
Charlie: the probability of her talking to Bob is within (ϵ,
δ) of her not talking to anyone, which in turn is within
(ϵ, δ) of her talking to Charlie, for a total of (2ϵ, 2δ).

More formally, Karaoke treats the scenarios of two
users communicating or not communicating with one
another as “neighboring databases” in the context of dif-
ferential privacy. Since Karaoke relies on cryptography,
Karaoke achieves computational differential privacy [17],
rather than the perfect information-theoretic definition.

Karaoke’s information leakage mostly comes from
situations when a user’s message is lost. This can occur
either due to an active attack, or due to a long network
outage (from which TCP cannot recover). Karaoke pro-
vides differential privacy for many rounds of message
loss (hundreds, as discussed in §6.1). We expect users
to avoid private conversations on highly unreliable net-
works; §7.6 provides some evaluation of network relia-
bility.

Karaoke’s design assumes that users can initiate con-
versations out-of-band. In other words, Karaoke hides
metadata during a conversation. A complete messaging
system would use Karaoke alongside a “dialing” protocol
for one user to initiate a conversation with another user,
and to establish a shared secret that is used to agree on a
pseudorandom sequence of dead drops. The bootstrap-
ping protocol would impose additional bandwidth and
CPU costs for clients, but these costs are amortized over
many conversation rounds. Alpenhorn [15] could serve
as such a dialing protocol.

3.2 Privacy approach
Karaoke’s design reveals two potential sources of infor-
mation to the adversary: information about dead drop
access patterns and information about how many mes-
sages were sent between servers across layers. In the rest
of this section, we outline Karaoke’s approach to hiding
this information from the adversary.

Optimistic indistinguishability. To prevent the adver-
sary from learning information based on dead drop access
patterns, Karaoke’s design strives to ensure that the dead
drop access patterns look the same regardless of the com-
munication pattern between users. Specifically, Karaoke
requires that users always send two messages in a round.
This allows a user to communicate with themselves if
they are not otherwise communicating with a buddy, by
arranging for their two messages to access the same dead
drop. This gives the appearance of an active conversa-
tion to an adversary that is observing dead drop access
patterns. If the user is communicating with a buddy, the
user simply arranges for each of their messages to swap
with a message from the buddy, using two different dead
drops.

When the adversary is passive and there are no net-
work outages, dead drop access patterns reveal no meta-
data about the communication of any pair of users. This
is because, for a pair of users that might be either idle or
chatting, there will be two dead drops, each of which is
accessed twice. If messages are lost, an adversary may
observe a dead drop with a single access, which may
reveal some information. Karaoke addresses this through
the use of noise messages, which we describe shortly.
However, message loss is detectable in Karaoke because
a user can simply look at the messages they receive back
from the server to determine if any of their messages (or
their buddy’s messages) were lost.

Karaoke’s “leakage-free” rounds allow it to improve
performance by reducing noise and letting a client appli-
cation decide how to handle leaky rounds. For example,
the client application could choose to:

1. Alert the user, who could ignore it if their current
conversation is not sensitive, or end the conversa-
tion if it is.

2. Retry the conversation after waiting (i.e., stopping
the conversation but continuing to send cover traf-
fic). This limits how quickly active attacks can
learn information about the user.

3. Retry the conversation after switching to a new
network (hopefully, one that is not under active
attack).

These policies (or combinations of them) limit the
rate at which an adversary can learn information through
active attacks. This allows Karaoke to add less noise
while still providing meaningful privacy guarantees.

Message swaps. A passive adversary in Karaoke can
observe the number of messages sent between any two
servers. To ensure that these observations do not reveal
user metadata, Karaoke’s topology is designed so that, for
any pair of messages that traverse the same honest server
in the same layer, an adversary cannot determine which
path prefixes (i.e., paths leading up to this honest server)
correspond to which path suffixes (i.e., paths taken by the
messages after this honest server). In other words, the
real scenario is indistinguishable from a scenario where
the messages swap paths after the honest server.

The swapped paths correspond to the two neighbor-
ing databases. If Alice and Bob are communicating,
then swapping the path suffix of one of Alice’s messages
with Bob’s would mean that the two messages from Al-
ice/Bob actually reach the same dead drop (so they are
idle). Similarly, if Alice and Bob are idle, swapping path
suffixes of two of their messages would mean that they
are communicating.
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This technique keeps the number of messages on each
link identical regardless of whether message paths were
swapped, thus preventing the adversary from learning
useful information given the number of messages on
every link.

Noise messages. Karaoke uses noise for two purposes:
to protect dead drop access patterns in case messages
are lost, and to enable message swaps. The noise takes
the form of additional messages generated by the servers
themselves. Each server generates messages to random
dead drops, and routes those messages through random
paths in Karaoke’s topology. These noise messages di-
rectly obscure the information available from the dead
drop access patterns, because accesses by real users are
now indistinguishable from accesses by noise messages.

Efficient noise verification. Some servers may be con-
trolled by the adversary. It is crucial that these adver-
sarial servers cannot subvert Karaoke’s noise, either by
generating insufficient noise in the first place, or by drop-
ping noise messages as they traverse Karaoke’s topology.
Karaoke deals with the first problem by requiring all
servers to generate enough noise to account for the possi-
bility of malicious servers generating no noise at all.

To deal with the possibility of noise messages being
dropped along the way, Karaoke uses Bloom filters [2]
to efficiently check for the presence of noise at each
layer. Each server at each layer in Karaoke’s topology
ensures that it has received all noise messages. It does
so by computing a Bloom filter of all of the messages it
has received, and sending this Bloom filter to all other
servers. The other servers check whether the noise mes-
sages they generated appear in this Bloom filter. If any
server indicates that their noise has been lost, the round
is stopped.

Prior systems such as Stadium [26] deal with this
problem by ensuring that no messages can be lost along
the way. This requires expensive cryptographic tech-
niques, such as verifiable shuffles. Karaoke’s observation
is that it suffices to ensure that noise messages are not
lost. Using Bloom filters is a good choice because they
do not require servers to reveal which messages were
actually noise; the Bloom filter includes the set of all
messages.

4 Design
This section describes Karaoke’s design, starting with the
overall structure and topology, and then describing the
Karaoke client library and how Karaoke servers work.

4.1 Overall structure
Karaoke operates in rounds, which are driven by a co-
ordinator. The coordinator is not trusted for privacy (its
only job is to announce the start of a new round), but a

malicious coordinator can impact the liveness of Karaoke.
Round numbers must be strictly increasing, so the coor-
dinator cannot trick clients into sending extra messages
in a round, and if it announces a round multiple times,
honest clients and servers will ignore it. Karaoke can
distribute the user load over many coordinators (that are
synchronized among themselves) since the coordinator’s
job is untrusted.

Karaoke’s communication topology is shown in Fig-
ure 1. By using randomly chosen paths and exchanging
messages at each layer, Karaoke provides a strong degree
of mixing between all messages. Furthermore, Karaoke
scales well with the number of servers, because each
message is handled by a fixed number of servers (one per
layer). As a result, adding more servers does not cause
Karaoke to do more work overall.

4.2 Client
Figure 2 shows the pseudocode for the Karaoke client
library. There are two modes of operation for the client:
either the client is in an active conversation with a buddy,
or the client is idle. In each round, the client must call
either client_active() or client_idle().

If the client is active, it must maintain a shared secret
with the buddy, denoted buddysecret in the pseudocode.
This secret should be established through a dialing pro-
tocol, such as Alpenhorn [15], and must evolve every
round (e.g., by hashing it, or by using Alpenhorn’s key-
wheel). Furthermore, if the client is active, it must pass
two messages to client_active() that will be relayed
to the buddy; conversely, client_active() will return
the buddy’s two messages, if successful. Each message
has a fixed size (256 bytes).

Onion generation. In each round, the client library gen-
erates two onions using gen_onion(). This function en-
capsulates a message msg in an onion encryption. The
onion is sent towards a dead drop chosen pseudoran-
domly based on the shared secret, the ID of this user
(myid), and the ID of the buddy (buddyid). For example,
Figure 1’s solid arrows indicate an onion sent by Alice to
dead drop B on server 2. The payload, msg, is encrypted
by the caller (specifically, by client_active()).
gen_onion() encrypts the message for each server in

turn, using the public keys of the servers. The innermost
encryption uses the key of the dead drop server, drop_srv.
The other onion layers correspond to a path chosen by
gen_path() using a pseudorandom number generator.

One subtle detail is that the dead drop server, drop_srv,
is chosen deterministically in gen_onion() to be one of
the servers from the two users’ paths in the previous layer
(either mypath[-1] or buddypath[-1]). This is an opti-
mization that reduces the degrees of freedom in Karaoke,
and thus allows Karaoke to generate noise efficiently, as
we will discuss in §4.3.
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def client_active(roundnum, myid, buddyid, buddysecret,
msg1, msg2):

c1 = encrypt(buddysecret + "msg1" + myid, msg1)
c2 = encrypt(buddysecret + "msg2" + myid, msg2)
o1 = gen_onion(roundnum, myid, buddyid,

buddysecret + "onion1", c1)
o2 = gen_onion(roundnum, myid, buddyid,

buddysecret + "onion2", c2)
r1, r2 = karaoke_run_round(o1, o2)

d1 = decrypt(buddysecret + "msg1" + buddyid, r1)
d2 = decrypt(buddysecret + "msg2" + buddyid, r2)
if d1 == None or d2 == None:
raise("Message loss")

return d1, d2

def client_idle(roundnum, myid):
secret = random.secretvalue()
c1 = random.ciphertext()
c2 = random.ciphertext()
o1 = gen_onion(roundnum, myid, myid + "dummy",

secret, c1)
o2 = gen_onion(roundnum, myid + "dummy", myid,

secret, c2)
r1, r2 = karaoke_run_round(o1, o2)
if r1 != c2 or r2 != c1:
raise("Message loss")

def gen_path(roundnum, rng):
servers = get_servers_and_keys(roundnum)
return [rng.choice(servers) for i in range(nlayers-1)]

# Choosing the last server to be one of the users’
# previous hops leads to more efficient noise generation.
def choose_last_srv(a, b):
pair_choice = (a.id + b.id) % 2
return sorted(a, b)[pair_choice]

def gen_onion(roundnum, myid, buddyid, secret, msg):
mypath = gen_path(roundnum, prng(secret + myid))
buddypath = gen_path(roundnum, prng(secret + buddyid))
drop_srv = choose_last_srv(mypath[-1], buddypath[-1])
drop_id = prng(secret).rand128()

onion = wrap((drop_id, msg), drop_srv)
for srv in reversed(mypath):
onion = wrap(onion, srv)

return onion

Figure 2: Pseudocode for the Karaoke client.

The dead drop ID, drop_id, is chosen pseudoran-
domly based on the shared secret. This ensures that an
adversary cannot learn any information by observing the
accessed dead drop IDs (since the secret changes every
round), yet the two users agree on the same dead drops.

Active conversation. When a client is in an active con-
versation, client_active() exchanges two messages
with the user’s buddy. It does so by first encrypting the
two messages, msg1 and msg2, to produce two ciphertexts
c1 and c2. The pseudocode uses + to derive subkeys
from the buddysecret master key. client_active()
then calls gen_onion() twice, with two subkeys derived
from buddysecret (appending the strings onion1 and
onion2 respectively). These onions are then passed to
karaoke_run_round(), which sends the onions through

Karaoke’s server topology and waits for responses, if
any.

Once client_active() receives the responses, it
must verify that no message loss took place—that is, that
the adversary did not block either of this user’s two mes-
sages, or the buddy’s two messages. client_active()
checks for this by ensuring that it receives two ciphertexts
that properly decrypt (using authenticated encryption).
If an adversary dropped one of the messages from this
client, karaoke_run_round will return None, causing the
decryption check to fail. If an adversary dropped one
of the messages from the buddy, the last server hosting
the dead drop will observe just one message reaching
the dead drop and echo back this client’s message in re-
sponse, which will similarly cause the decryption check
to fail (because the message is not encrypted using the
subkey generated with buddyid). If no message loss took
place, client_active() returns the decrypted messages.

Sending a message back to the user in case of mes-
sage loss is important since if there is a conversation
between Alice and Bob, and an adversary drops Bob’s
message, then one naive outcome might be that now
Alice receives nothing in response in that round. This
would be quite unfortunate: the adversary will know Bob
was talking to Alice! By echoing back the message, the
last server sends at least some (fixed-size) data towards
Alice, so that an adversary cannot tell that Alice was
Bob’s conversation partner. (To be precise, a random
response would also suffice in this case.) Intermediate
servers similarly enforce that every request must receive
a response, in case the last server was malicious.

Idle client. When there is no active conversation, Karaoke’s
client library ensures that the externally observable be-
havior, from the adversary’s perspective, remains iden-
tical. client_idle() does so by generating random
ciphertexts, c1 and c2, which should be indistinguish-
able from ciphertexts that would have been generated
by client_active(). client_idle() chooses a random
secret, and constructs two onions, o1 and o2, simulating
a conversation between users myid and myid+"dummy".

Much like client_active(), client_idle() needs
to check for message loss. It does so by ensuring that it
receives c2 and c1 respectively in response to its onions.

Handling message loss. In Karaoke, message loss can
leak information to an adversary, and thus reduce the de-
gree of privacy that the user can expect. Karaoke detects
such events, which allows the client application built on
top of the library from Figure 2 to avoid excessive privacy
loss. Specifically, Karaoke’s client closes any active con-
versation after encountering message loss. This prevents
an adversary from dropping a user’s messages in many
rounds to learn additional information. Other policies
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def process_layer(roundnum, layer, inputs):
msgs = [decrypt(srvkey[roundnum], msg)

for msg in inputs]
msgs = dedup(msgs)
if layer == 0:
msgs += generate_noise(roundnum)

else:
bloom = bloomfilter.new(inputs)
for srv in get_servers_and_keys(roundnum):
if srv.rpc("check_bloom", roundnum,

layer, bloom) != True:
raise("Lost noise, halting round")

outgoing = collections.defaultdict(list)
for m in msgs:
outgoing[m.next_hop].append(m)

for srv, q in outgoing:
srv.rpc("enqueue_batch_for_process_layer",

roundnum, layer+1, shuffle(q))

def check_bloom(roundnum, layer, bloom):
caller = get_rpc_caller()
for m in noise msgs routed via caller at layer:
if m not in bloom:
return False

return True

Figure 3: Pseudocode for Karaoke’s server.

for dealing with message loss can be implemented that
balance usability and privacy, as outlined in §3.

Karaoke should rarely lose messages, because IP
packet loss in the network is handled by TCP (see §7.6).
Thus, the primary source of false positives are long-lived
network outages. We recommend that users stop sensitive
conversations when their network becomes unreliable
(regardless of whether it is the result of an attack).

4.3 Server
Figure 3 presents the pseudocode for Karaoke’s server.
The pseudocode focuses on the processing of onions
from clients to the dead drops, as well as the generation
and verification of noise messages. Not shown is the
logic for setting up per-round public keys (signed with a
long-term private key of each server), accepting inputs
from users in the first layer, exchanging the messages
that are addressed to the same dead drop in the last layer,
and sending the responses back to the clients.

Layer processing. Each server uses the process_layer()
function shown in Figure 3 to process the set of input
messages at a given layer. In the first layer, the server
collects input messages from clients until the round co-
ordinator kicks off the round processing. In subsequent
layers, each server waits to receive inputs from every
server in the previous layer.

Layer processing starts by decrypting the inputs and
de-duplicating them. It is important to remove duplicates
(and to ensure the ciphertexts are not malleable), because
otherwise an adversary could tag a victim’s message
by replicating it several times and looking for which

message appears to be replicated at the end of Karaoke’s
topology.

Noise. The next step of layer processing involves en-
suring that the necessary noise is present. In the first
layer, each server generates noise; subsequent layers use
Bloom filter checking to ensure that noise has not been
dropped by malicious servers.

Noise generation. At the start of every round, each
server generates noise. The goal of noise messages is to
mask dead drop access patterns in the case of message
loss, meaning that legitimate user messages did not form
a pair of accesses to the same dead drop. In this case, an
adversary observes some number of dead drops with two
accesses, and some number with just a single access (due
to a non-paired message). This translates into the two
kinds of noise messages generated by Karaoke: “singles”
(noise message that generates a single dead drop access),
and “doubles” (a pair of noise messages that generates a
double access to the same dead drop).

Karaoke’s threat model assumes that some servers
may be malicious, but it is not known a priori which
servers are malicious. An adversary could use a ma-
licious server to trace back the source of a dead drop
access to the last honest server in the path. Thus, as we
show in our analysis (see appendix), it is important that
all outgoing links from every server carry an adequate
number of noise messages, since every link could poten-
tially be the outgoing link from the last honest server on
some message’s path.

Like Stadium [26], Karaoke uses the Poisson distri-
bution to sample noise messages. This distribution is a
good fit for distributed noise generation for two reasons.
First, it allows precisely sampling a non-negative integer
for the number of messages, even if the distribution mean
is low. Second, the sum of many small Poisson samples
is also a Poisson distribution, simplifying the analysis.

Let N be the number of servers, and l be the length of
Karaoke paths (nlayers in the pseudocode). Our topol-
ogy provides N l possible routes, which makes it com-
putationally cumbersome to sample for every route indi-
vidually, and inefficient, since there are only (l − 1) · N2

communication links in the entire system (there are l − 1
transitions between layers, and in each transition each
server is connected to all others). We would ideally like
to just sample the amount of noise on every link.

To generate the singles noise, a server begins by
sampling the noise for the links to the last layer of servers
(layer l), and samples how many messages go over each
of the N2 links in that phase. For each link, the server
samples from the Poisson distribution, with mean λ1. The
server then sums them up to find how many of its noise
messages need to leave each server in the previous layer.
The server then samples again, to decide how many noise
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messages travel on each link to the servers in the previous
layer (l − 1). Of course, there will likely be a mismatch;
i.e., a server in layer l − 1 has to distribute a different
number of messages than it receives. In this case, the
server just adds incoming or outgoing noise messages
to match the other by adding extra noise messages and
distributing them uniformly among all links. Karaoke
continues in this fashion until it reaches the first layer.
The number of these extra messages is unlikely to be
large, because it is simply the difference between two
samples from the same Poisson distribution. Overall,
each server samples (l − 1) · N2 times from the noise
distribution to assign single-access noise.

To generate doubles noise, the server performs a sim-
ilar procedure to the one described above. Notice that in
the last layer we only iterate over the N2/2 possible pairs
of links that output messages to the same dead-drop host-
ing server (N2/2 is the number of possible second-to-last-
hop pairs of servers, since order does not matter). This is
because the dead-drop hosting server is chosen determin-
istically by gen_onion() based on choose_last_srv().
Similarly to the above, for each such pair, we sample
noise from the Poisson distribution with mean λ2. The
result denotes the number of pairs of messages, where
one message is routed on each link. In all layers before
the last one, the procedure for generating double-access
noise is exactly the same as the single-access noise case
described above.

Preserving noise. In layers after the first one, the servers
must ensure that noise messages have not been dropped
by a malicious server from a previous layer. Karaoke
servers do this by computing a Bloom filter [2] over all of
the messages received by that server in a particular layer.
Each server then sends its Bloom filter to all other servers
to check whether their noise appears to be present. As
long as all servers indicate that their noise is present, this
server can assume that no noise messages from honest
servers have been dropped, and proceed with processing
the layer.

The only queries that matter are an honest relay
checking with an honest noise-sender. A malicious noise-
sender does not matter since it can send zero noise. A
malicious relay does not matter since it can relay mes-
sages even if noise is missing. We incorporate both of
these in determining how much noise is needed (gener-
ating extra noise to account for malicious servers that
generate zero noise).

At each hop, one encryption layer of the message
is decrypted. If an adversary does not know a server’s
private key, the adversary cannot predict the decryption
result (it looks pseudorandom, since the onion contains
another encrypted message). A malicious server that
refuses to forward a message cannot guess the decrypted

version of that message after the next honest hop. Thus,
the adversary cannot fill in another message that will
"look like" the dropped message in the Bloom filters
of subsequent honest servers. Karaoke’s topology and
parameters ensure at least two honest servers in every
path (with high probability); see analysis in §5.

To check whether noise messages are present, a server
runs check_bloom(). This function must first determine
which noise messages were routed through the calling
server at a given layer, and second, determine the ci-
phertext representation of the onion that would be seen
by that server at that layer. Finally, check_bloom() ver-
ifies that all of those ciphertexts are in the Bloom filter,
without disclosing which messages are noise and which
are real.

The Bloom filter has false positives, which may lead
check_bloom() to falsely conclude that a noise message
is present. In Karaoke, it is up to the server running
process_layer() to construct the Bloom filter with ade-
quate parameters to achieve suitably false positive rate.
If the server running process_layer() is malicious, it
can construct a Bloom filter with 100% false positive
rate. However, such a malicious server could also ignore
the result of check_bloom() altogether.

The probability of not detecting n discarded noise
messages shrinks exponentially with n, since messages
are independently pseudorandom (see above). This al-
lows Karaoke to use relatively small Bloom filters (with
10% false positive rate) and yet ensure that no more than
a few noise messages may be lost (for n = 20 the proba-
bility of missing detection is 10−20). Karaoke generates
a few extra noise messages to account for the possibil-
ity that several might be lost without detection (but not
more).

Noise verification involves an all-to-all communica-
tion, but does not lead to quadratic bandwidth require-
ments as the number of servers grows. This is because
increasing the number of servers would proportionally
reduce the size of the Bloom filters, since the Bloom
filters represent only those messages that are handled by
a particular server. Other horizontally scalable systems
have similar phases. For example, Stadium [26], which
most closely related to Karaoke, includes an all to all dis-
tribution between “input chains” to “output chains”; in
Stadium, this phase involves cryptographic computations
(signature verification and NIZKs). Although in Karaoke
the all-to-all communication happens at every hop, the
number of hops is fixed so the overhead of Karaoke is
expected to remain much smaller than Stadium even for
large deployments.

5 Analysis
This sections shows that Karaoke achieves its privacy
goal (§3.1), which is captured by the following theorem.
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Theorem 1. Karaoke is ϵ, δ-differentially private with
respect to the following neighboring databases: (1) Alice
is talking with another user Bob, and (2) Alice is idle.

Proof sketch. We show Theorem 1 holds in the analysis
below by the following argument. We begin by show-
ing that Karaoke servers maintain noise messages in
the system (§5.1). Next, we analyze optimistic indistin-
guishability, showing that in the common case Karaoke
leaks no communication metadata under passive attacks
(§5.2). Optimistic indistinguishability has one caveat:
the attacker may launch active attacks to learn some in-
formation about the communication patterns of some
users. We use differential privacy to reason about the
amount of information leaked to the attacker under this
scenario (§5.3).

The differential privacy parameters (ϵ and δ), the
singles and doubles noise (λ1 and λ2), and the number of
rounds k for which this theorem holds are discussed in
§6.1. The appendix provides detailed proofs.

5.1 Efficient noise verification
For Karaoke’s privacy guarantees to hold, it is crucial
to prevent the attacker from discarding noise messages
generated by the honest servers. Karaoke identifies when
noise messages are discarded using Bloom filter checks
(§4.3). Bloom filters, however, allow for false positives,
so a few noise messages might be dropped even if the
Bloom filter check shows they are present. With a false
positive rate p, the probability that k lost noise messages
go undetected is pk. Even with a relatively high p = 10%,
it is sufficient to increase the mean of the single- and
double-access noise distributions (λ1 and λ2, from §4.3)
by just 20

h (where h is the number of honest servers) to
ensure Karaoke keeps adequate noise with probability
> 1 − 10−20.

Adjusting the Bloom filter size allows Karaoke to
control the false positive rate, but the size of the Bloom
filter reveals the number of messages processed by a
server. This is acceptable, as the rest of Karaoke’s analy-
sis does not rely on the total number of messages being
hidden.

5.2 Optimistic indistinguishability
We continue our analysis by showing that combining
noise with Karaoke’s routing topology prevents metadata
leakage. That is, if the two messages from Alice and
the two messages from Bob route through the system,
then it is very likely to be completely indistinguishable
whether they exchange messages with each other (ac-
tive mode) or with themselves (idle mode). We begin
our analysis by explaining the conditions under which
optimistic indistinguishability holds, and then evaluate
the probability for these conditions to hold considering a
passive adversary.

5.2.1 Avoiding metadata leakage
Karaoke’s optimistic indistinguishability stems from the
following theorem:

Theorem 2. Assume that two messages a and b, from
honest senders (users or servers), route through an hon-
est server si at layer i. Denote the two message routes
by ⟨s1

a, . . . , s
i, . . . , sl

a⟩ and ⟨s1
b, . . . , s

i, . . . , sl
b⟩. Then it is

equally likely, given the attacker’s observations of the
inter-server links and malicious intermediary servers (i.e.,
observations on all but the last server), that a routes
through ⟨si+1

a . . . , s
l
a⟩ and b routes through ⟨si+1

b . . . , s
l
b⟩

or vice-versa.

Proof. Since si is honest, its shuffle permutation is un-
known to the adversary. Each message in Karaoke takes
an independent route. Denote the outgoing links from
server si that a and b take by l1, l2, and the attacker’s
observations on outgoing links from si by O. It holds
that Pr[a takes l1 | O] = Pr[b takes l1 | O] and that
Pr[a takes l2 | O] = Pr[b takes l2 | O]. Therefore,

Pr[a takes l1 ∧ b takes l2 | O] =
Pr[a takes l2 ∧ b takes l1 | O]

Furthermore, since messages are onion-encrypted,
the bit-level representations of messages a and b for-
warded by si are indistinguishable from random. As a
result, an adversary cannot distinguish whether a travels
over the link si → si+1

a and b over si → si+1
b or vice-versa.

Assume that a and b swap the suffix of their routes
following layer si. Since the two messages swap routes,
the number of messages on each following link remains
the same (and the messages themselves are indistinguish-
able from one another because they are onion-encrypted).
Therefore all of the attacker’s observations on inter-server
links remain the same, regardless of whether the two mes-
sages were swapped. □

Theorem 2 allows us to swap between two messages.
However, it requires that the two swapped messages route
through the same honest server. The next theorem, which
follows from Theorem 2, extends this observation and
shows that even messages with non-intersecting routes
can be indistinguishably swapped, with the help of noise
messages.

Theorem 3. Let a and b be two messages that route
through ⟨s1

a, . . . , s
l
a⟩ and ⟨s1

b, . . . , s
l
b⟩ respectively. Let n0

and n1 be two other messages from honest participants
that route through ⟨s1

n0
, . . . , sl

n0
⟩ and ⟨s1

n1
, . . . , sl

n1
⟩. As-

sume that there exists some i0 and j1 such that si0
n0 = si0

a

and s j1
n0 = s j1

b , where the servers si0
a and s j1

b are honest and
i0 < j1. This means that, for some layer i0, n0 and a route
through the same honest server, and for some layer j1,
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n0 and b route through the same honest server. Similarly,
assume there exists some i1 and j0 such that si1

n1 = si1
b

and s j0
n1 = s j0

a , where the servers si1
b and s j0

a are honest,
i1 < j0, i0 < j0, and i1 < j1. Under these conditions, and
using observations from network links and intermediary
servers, it is indistinguishable whether the messages took
their actual routes or the following alternative routes:

a routes via ⟨s1
a, . . . , s

i0
a , s

i0+1
n0 , . . . , s

j1−1
n0 , s

j1
b , . . . , s

l
b⟩

b routes via ⟨s1
b, . . . , s

i1
b , s

i1+1
n1 , . . . , s

j0−1
n1 , s

j0
a , . . . , sl

a⟩

n0 routes via ⟨s1
n0
, . . . , si0

a , s
i0+1
a , . . . , s j0−1

a , s j0
n1 , . . . , s

l
n1
⟩

n1 routes via ⟨s1
n1
, . . . , si1

b , s
i1+1
b , . . . , s j1−1

b , s j1
n0 , . . . , s

l
n0
⟩

Proof. Applying Theorem 2 four times on the following
arguments gives the result:
1. on messages a, n0 at honest server si0

a

2. on messages b, n1 at honest server si1
b

3. on messages a, n1 at honest server s j0
a

4. on messages b, n0 at honest server s j1
b

Figure 4 illustrates these four swaps (where message
a = a1 and message b = b0). □

Given four messages a, b and n0, n1 the attacker can-
not identify, using observations on network links and
malicious intermediary servers, whether the messages
take one route where a, b end up on servers sl

a, s
l
b and

n0, n1 end up on servers sl
n0
, sl

n1
or they take an alterna-

tive route where a, b reach sl
b, s

l
a and n0, n1 reach sl

n1
, sl

n0
.

However, if the last servers (sl
∗) turn out to be malicious,

then the attacker might still distinguish between the two
scenarios. To see why, consider the case where n0 is a
double-access noise message and its pair routes through
an all-malicious route. In this case, the attacker can ob-
serve the difference between the two alternative scenarios
because the last server on n0’s route would have actually
received n1 instead of n0 and therefore would observe
one less double access and two more single accesses if
n0 and n1 were to swap (i.e., using the alternative routes
in Theorem 3). The next theorem describes how mes-
sages between two honest users can be swapped without
leaking information to the attacker, when n0 and n1 are
single-access noise messages.

Theorem 4. If the premise for Theorem 3 holds for two
user-messages a and b and two single-access noise mes-
sages n0 and n1, then it is indistinguishable whether a
routes through ⟨s1

a, . . . , s
l
a⟩ and b through ⟨s1

b, . . . , s
l
b⟩, or

a routes through ⟨s1
a, . . . , s

i0
a , s

i0+1
n0 , . . . , s

j1−1
n0 , s

j1
b , . . . , s

l
b⟩

and b routes through ⟨s1
b, . . . , s

i1
b , s

i1+1
n1 , . . . , s

j0−1
n1 , s

j0
a , . . . , sl

a⟩.

Proof. Applying Theorem 3 shows that given just obser-
vations from network links and intermediary servers, an

si0
a1

si1
b0

a0

n0

a1

b0

n1

b1

s j0
a1

s j1
b0

X

N1

N0

Y

Alice

Bob

Users Servers Dead drops

Figure 4: An illustration of Karaoke’s optimistic indistinguishability:
an adversary cannot determine whether Alice and Bob are communi-
cating via dead drops X and Y. Straight lines represent links (poten-
tially across multiple intermediate servers) that an adversary can track.
Servers si0

a1 , si1
b0

, s j0
a1 , and s j1

b0
are honest. Solid bold lines indicate the

actual path taken by messages a1 and b0. Dotted bold lines indicate the
actual path taken by messages n0 and n1. An adversary cannot distin-
guish whether a1 and b0 took the solid or dotted bold lines. Squiggly
lines indicate users generating two messages in a round.

adversary cannot determine which message takes what
route. We now focus on the last servers of each mes-
sage route. Assume that they are all malicious and allow
the attacker to observe the dead-drop access patterns.
The last server on n0’s route, in the alternative routing
scheme, would have received n1 (after all four swaps);
see illustration in Figure 4. Since n1 and n2 are two single
access noise messages, generated by honest servers, the
malicious last server would observe in both cases an en-
crypted message (that was encrypted by an honest server)
reaching a dead drop by itself. Similarly this holds for
the last server on n1’s route. The user messages a and
b would both reach encrypted to a double-access dead
drop (since the attacker is passive, the paired message
reaches the dead drop too). So both cases are indistin-
guishable. □

We refer to two messages a and b for which there
exists two single-access noise messages n0 and n1 that
satisfy the premise of Theorem 4 as indistinguishably
swappable. We next use Theorem 4 to analyze Karaoke’s
privacy guarantees.

5.2.2 Alice talking with Bob, and claims “idle”
Consider two users, Alice and Bob, who may be talking
with each other or idle. Alice sends two messages a0, a1
and Bob sends b0, b1. If Alice and Bob communicate,
then Alice’s a0 meets Bob’s b0 at the dead drop, and a1
meets b1 at a different (and independently chosen) dead
drop. If they do not communicate, then a0 meets a1 at a
dead drop and so do b0 and b1.
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Theorem 5. If one of the pairs of messages ⟨a0, b1⟩ or
⟨a1, b0⟩ is indistinguishably swappable, then it is indis-
tinguishable whether Alice is talking to Bob or they are
both idle.

Proof. To understand why this theorem holds, consider
Figure 4. Assume without loss of generality that the
premise holds for the pair of messages ⟨a1, b0⟩. Applying
Theorem 4 on ⟨a1, b0⟩, it is therefore indistinguishable
whether a1 routes to dead drop X and b0 routes to dead
drop Y or vise versa. In the first scenario a0 meets b0 at
dead drop Y and a1 meets b1 at dead drop X, so Alice
and Bob are talking. In the second (indistinguishable)
scenario it is actually a0 that meets a1 at dead drop X
and b0 that meets b1 at dead drop Y so Alice and Bob
are idle. Importantly, it does not matter what route Alice
and Bob’s other messages, a0 and b1, take; the servers
handling these messages may all be malicious. □

The appendix analyzes the probability with which
optimistic indistinguishability holds. For example, with
N = 100 servers, out of which h = 80 are assumed
honest, a chain length of l = 14, and where each honest
server generates single-access noise with mean λ1 ≥ 0.5
(so the mean of single-access noise on each link is hλ1 =

40), the probability that optimistic indistinguishability
holds is at least 1 − 5 · 10−14.

5.2.3 Alice idle, and claims “talking with Bob”
Theorem 6. If the premise for Theorem 4 holds for at
least one of the message pairs ⟨a0, b0⟩, ⟨a0, b1⟩, ⟨a1, b0⟩,
⟨a1, b1⟩, then it is indistinguishable whether Alice is talk-
ing to Bob or they are both idle.

When Alice and Bob are idle, a0, a1 and b0, b1 travel
to the same dead drop. It is therefore sufficient to indis-
tinguishably swap one of four options: a0 with b0, or
a0 with b1, or a1 with b0, or a1 with b1 (rather than two
options as in §5.2.2: a0 with b1, or a1 with b0). This
gives an even higher probability of achieving indistin-
guishability.

5.3 Message loss and differential privacy
An active attacker can discard user messages before
Karaoke unlinks them from their senders (e.g., before the
first layer, as users submit messages to Karaoke). This
might prevent Karaoke from “indistinguishably swap-
ping” messages as required for our analysis in the passive
case (§5.2). We now analyze this scenario. The appendix
includes the proofs for the theorems below.

Consider a user Alice and an active attacker who tries
to learn whether she is talking with Bob.

Theorem 7. The active attacker’s best strategy (leaking
the most information) is to either discard both messages
from Alice, or both messages from Bob.

Intuitively, the theorem holds since if the attacker dis-
cards both messages from Alice or both messages from
Bob, there are no messages to swap with so optimistic
indistinguishability never holds. The following theorem
holds when the attacker is active:

Theorem 8. Karaoke is ϵ, δ-differentially private in the
face of message loss (e.g., due to active attackers), if both
user messages route through at least two honest servers.

The conditional in Theorem 8 holds with overwhelm-
ing probability in the route length parameter l. For ex-
ample, with a route length l = 14, assuming 80% of the
servers are honest, this conditional holds with probability
1 − 2 · 10−8 (which is folded into the differential privacy
δ parameter of Karaoke).

6 Implementation
Karaoke is implemented in 4000 lines of Go code, com-
piled with Go 1.11. Onion decryption dominates the
CPU costs of our prototype and is implemented in na-
tive amd64 assembly, provided by Go’s NaCl library.
The servers use the gRPC library over TLS for commu-
nication. We use streaming RPCs and batching RPCs
together to reduce latency. Karaoke issues RPCs over
multiple TCP connections to improve throughput.

6.1 Parameter selection
We would like Karaoke to provide good privacy guaran-
tees even after users communicate via Karaoke for a long
time. We target ϵ = ln 4 and δ = 10−4 after 108 rounds of
communication, of which 245 rounds encounter message
loss during a sensitive conversation.

Figure 5 plots the expected number of noise mes-
sages that an honest server generates in a round, and the
resulting eϵ privacy guarantee (with a fixed δ = 10−4

after 108 communication rounds with 245 rounds of mes-
sage loss), for deployments of N = 50, . . . , 200 servers
where we assume h = ⌊0.8N⌋ servers are honest, and
route length l = 14. For example, in our configuration
using 100 servers, each server generates an average of
N2λ1 + N2λ2 = 25K noise messages per round. Comput-
ing the data in Figure 5 required the use of composition
over multiple rounds [10, 13].

As we evaluate in §7.6, 245 rounds of message loss
is about an order of magnitude higher than the num-
ber of expected losses due to network outages in a year.
Karaoke could achieve the same privacy guarantee under
more active attacks by adding more noise.

7 Evaluation
We quantitatively answer the following questions:
• Can Karaoke achieve low latency for many users?

• Can Karaoke scale to more users by adding servers
while maintaining the same low latency?
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Figure 5: eϵ as a function of the number of noise messages per server
per round, for δ = 10−4, h = ⌊0.8N⌋, and l = 14.

• How is Karaoke’s performance affected by the frac-
tion of honest servers?

• How important are Karaoke’s techniques for achiev-
ing low latency?

• How often would network problems cause Karaoke
users to observe message loss?

7.1 Experimental setup
To answer the above questions we ran our prototype on
Amazon EC2 using c5.9xlarge instances (36× Intel
Xeon 3.0 GHz cores with 72 GB of memory and 10 Gbps
links). We ran experiments using VMs in the same data
center to save on AWS bandwidth costs. Realistically,
Karaoke would be deployed on servers in different coun-
tries (or trust zones). For example, we envision some
fraction of the servers running in the US and the rest
running in different countries in Europe. We simulate
this topology by adding 100ms of round-trip network
latency (the round-trip time from the east coast of the US
to Europe) to each VM using the tc qdisc command.

We simulate millions of users by having servers gen-
erate extra messages in the first layer (to avoid the cost of
launching many more client VMs). The extra messages
are pre-generated (before the round starts) so that server
CPU costs are not muddled by what would normally be
client CPU costs.

An additional VM is used to run a coordinator server.
This server has two jobs: it starts rounds across all
Karaoke servers and injects probe messages into each
round to measure the end-to-end latency of the round.

Unless specified otherwise, our experiments assume
that 80% of the servers are honest, which translates into
a topology with 14 layers. Karaoke’s Bloom filters are
tuned for a 10% false positive rate, as discussed in §5.1.

7.2 Karaoke achieves low latency
To evaluate Karaoke’s end-to-end latency we ran an ex-
periment using 100 Karaoke servers. Figure 6 shows the
results. For comparison, we also include the latency of
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Figure 6: End-to-end latency of user messages with a varying number
of users. Vuvuzela is running with 3 servers; Karaoke and Stadium are
both running with 100 servers.
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Vuvuzela and Stadium as reported in their papers which
provide privacy comparable to Karaoke. The Vuvuzela
and Stadium results used c4.8xlarge VMs, so we also
measured Karaoke’s performance on this less powerful
instance type. Stadium’s performance was achieved us-
ing 100 servers with a chain length of 9. Vuvuzela used
only 3 servers because its performance does not increase
with the number of servers.

The results show that with 2M users Karaoke achieves
5× lower latency than Vuvuzela, and 8× lower latency
than Stadium (using the weaker c4 instances). Further-
more, the slope of the Karaoke line in Figure 6 shows
that Karaoke scales better with more users than either
Vuvuzela or Stadium. Karaoke’s scaling is better than
Vuvuzela because only a fraction of Karaoke servers
are involved in handling the messages from every addi-
tional user, whereas every Vuvuzela server must handle
every additional user’s messages. Karaoke’s scaling is
better than Stadium because Stadium must perform ex-
pensive zero-knowledge proofs for every additional user
message, whereas Karaoke’s marginal cost are just in
onion decryption and network bandwidth. For instance,
Karaoke achieves 10× lower latency than Stadium with
16M users.
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Figure 8: End-to-end latency for 2M user messages and 100 servers
with a varying fraction of honest servers. The right y-axis shows the
required number of layers to achieve privacy for a given fraction of
honest servers.

7.3 Scaling by adding servers
The previous subsection shows that Karaoke’s latency
increases as more users join the system. This is unavoid-
able if the number of servers is fixed. Ideally, Karaoke
would be able to support additional users without increas-
ing latency by adding a proportional number of servers.
To evaluate if this is the case, we measured the end-to-end
latency of Karaoke with a varying number of servers and
a proportional number of users (25K users per server).

Figure 7 shows the results, which indicate that Karaoke
can maintain low latency for an increasing number of
users by adding more servers to the system. Karaoke’s la-
tency goes down slightly as the number of servers grows
because it requires less noise, as shown in Figure 5.

7.4 Fraction of honest servers
Figure 8 shows the number of layers required to achieve
Karaoke’s privacy guarantees with a varying fraction
of honest servers, and the impact that increasing the
number of layers has on end-to-end latency. The re-
sults show Karaoke’s tradeoff between lower latency and
fewer trusted servers. When fewer servers are assumed
honest, each honest server has to create more noise to
compensate for the possibility of malicious servers not
sending any noise. Karaoke achieves acceptable latency
for text messaging even if only 60% of the servers are
honest. On the other hand, Karaoke would not be a good
fit if only 30% of the server were honest.

7.5 Importance of techniques
To demonstrate the importance of Karaoke’s key tech-
niques (optimistic indistinguishability and using Bloom
filters for efficient noise verification), we consider the
performance of Karaoke without these techniques. In
the absence of optimistic indistinguishability, Karaoke
would need to add ∼320K noise messages per server per
round to achieve the same level of privacy. This trans-
lates into an increase in latency from 6.8s to 31s for 2
million users.

In the absence of Bloom filters, Karaoke could use
verifiable shuffles similar to Stadium. For 6 million users
and 100 servers, each Stadium server spends 6s generat-
ing verifiable shuffles and another 2s verifying shuffles

at each hop in the network. Karaoke, on the other hand,
spends 250ms generating and checking Bloom filters at
each hop. Using verifiable shuffles in Karaoke would
increase Karaoke’s overall latency by about 2 minutes (8
seconds for each of Karaoke’s 14 hops). This shows that
both techniques are crucial for Karaoke’s performance.

7.6 Leakage due to network issues
Karaoke’s design avoids leaking information when the
network is well-behaved, by arranging for all dead drop
access to occur in pairs. However, network issues could
result in some information being leaked if some dead
drop accesses are no longer paired. Karaoke runs over
TCP so momentary packet loss will not prevent message
delivery. On the other hand, if clients can not communi-
cate with the Karaoke servers for an extended period of
time, they will be unable to submit their message into a
round.

To estimate how often this might happen, we per-
formed an experiment by probing a Karaoke server every
2 minutes for a day from 100 machines using RIPE AT-
LAS [22], which provided machines distributed across
the globe that communicate with our server. Each probe
consisted of 3 ping packets, spaced 1 second apart. The
experiment generated 71,194 probe results, of which
70,106 received responses to all 3 pings, 991 received 2
responses, 60 received 1 response, and 37 received no
responses (indicating a complete loss of network con-
nectivity). The complete losses of network connectivity
occurred in “bursts,” where a machine experienced com-
plete loss of connectivity for several adjacent two-minute
intervals. The complete losses were encountered by 8
machines (7 of them observing one “burst” and one ob-
serving two “bursts”).

These results suggest that a Karaoke client could
encounter approximately 9 message loss events over 100
days, or about 33 such events per year. (Since Karaoke
clients switch to idle mode after detecting message loss,
only the first loss in a burst matters for this analysis.) This
compares favorably with the message loss that Karaoke’s
parameters can handle (245, as discussed in §6.1).

8 Conclusion
Karaoke improves the latency of metadata-private text
messaging by almost an order of magnitude compared
to prior work. Karaoke also scales well with the number
of users and the number of servers, maintaining its low
latency. To achieve its performance, Karaoke introduces
a new design, exchanging messages between each server
in multiple layers, as well as two key techniques. Op-
timistic indistinguishability allows Karaoke to achieve
perfect privacy with high probability in case no messages
from the user (and their peer) are lost, and allows clients
to detect message loss. Efficient noise verification allows
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Karaoke to generate noise messages across many servers,
and to use efficient Bloom filter checks to prevent adver-
saries from discarding the noise. We hope that Karaoke’s
low latency will bring metadata-private messaging closer
to widespread adoption.
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A Detailed analysis
The appendices show that Karaoke achieves its privacy goal, captured by Theorem 1
and following the arguments in the proof sketch from §5.

B Noise distribution and verification
Honest Karaoke servers decide the number of single- and double-access noise messages
they generate following the Poisson distribution. Each honest server draws N2 times
from the single access Poisson distribution Pois(λ1) and N2

2 times from the double access
Poisson distribution Pois(λ2) (sending 2× the number of drawn noise messages). Since
Poisson is additive, we find that each server sends noise that distributes Pois(N2λ1 +

N2λ2). Each inter-server link contains the aggregate of all h honest servers, and there are
N2 links. Therefore, the noise covering each inter-server link distributes Pois(hλ1 +hλ2).
Honest servers need to send more noise in order to cover for malicious ones that might
not send any noise. They do so by increasing the noise means by a factor of N

h , therefore,
set λ1 =

N
h λ
′
1 and by λ2 =

N
h λ
′
2 (where λ′∗ denote the means of the noise needed for

privacy). The noise covering each inter-server link distributes Pois(Nλ′1 + Nλ′2). For
convenience, in the rest of our analysis we use λ1, λ2 to note λ′1, λ

′
2 (i.e., per our notation,

the noise on every link distributes Pois(Nλ1 + Nλ2)).

Notation. We use Pois(α, λ) to denote the probability mass function Pois(λ) of the
Poisson distribution (which Karaoke uses for generating noise) evaluated at α.

C Optimistic indistinguishability
C.1 Avoiding any metadata leakage
We evaluate the probability that Karaoke does not leak any information about the user’s
metadata. Namely, that the premise from Theorem 5 holds for a0, b1 or a1, b0. We
begin the probabilistic analysis by computing the probability that a0 and b1 can be
indistinguishably swapped. This is the product of the probabilities of the following
events, computed below (i.e., we “and” that these conditions are satisfied):

1. There are at least 2 honest servers in the routes of a0 and b1.

2. Given at least two honest servers in each route, there are honest servers in a0 and
b1’s routes located at layers i0, i1, j0, j1 such that i0, i1 < j0 ∧ i0, i1 < j1.

3. Given i0, j1, there exists a single-access noise message that routes through si0
0 , s

j1
1 .

4. Given i1, j0, there exists a single-access noise message that routes through si1
1 , s

j0
0 .

C.1.1 Analysis
Notation. To simplify the exposition of our analysis, denote the servers on a0’s route
by s∗0 and the servers on b1’s route by s∗1. Denote by ¬s the event where server s is
malicious. Also denote the fraction of honest servers by f = h

N
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Honest server placement. To facilitate optimistic indistinguishability, a0 and b1 need
to be routed through at least two honest servers. The first l − 1 servers in the route of
each message are selected independently, and our analysis ignores the possibility of
the last server being honest to provide a lower bound on the probability that optimistic
indistinguishability holds. The probability that at least two of these servers are honest is
1 − Binomial-CDF(1, l − 1, f ), namely the probability that the number of honest servers
is not 0 or 1. Call the leftmost honest server si0

0 , s
i1
1 and rightmost honest server s j0

0 , s
j1
1

for messages a0, b1 respectively.
To evaluate the probability of forming routes that allow for optimistic indistinguisha-

bility (illustrated in Figure 4), namely that i0, i1 < j0 ∧ i0, i1 < j1, let us first compute
the probability that a certain server at layer i is the leftmost honest server in a message
m’s route. Since there are at least two honest servers, there is certainly some server that
is the leftmost honest server. Since the route includes l − 1 servers, the server at layer
l − 1 cannot be the leftmost. We compute this probability as follows:

Pr[si
m leftmost honest server | some server honest] (1)

= Pr[si
m honest ∧ ¬si′

m,∀i′ < i | some server honest]

= Pr[some server honest | si
m honest ∧ ¬si′

m,∀i′ < i] ·
Pr[si

m honest ∧ ¬si′
m,∀i′ < i]

Pr[some server honest]
(Baye’s rule)

Notice that, since si
m is honest:

Pr[some server honest | si
m honest ∧ ¬si′

m,∀i′ < i] = 1

and,
Pr[si

m honest ∧ ¬si′
m,∀i′ < i] = (1 − f )i−1 · f

and finally, that
Pr[some server honest] = 1 − (1 − f )l−1.

So the probability that we are interested in, described in Equation Equation 1, equals:

(1 − f )i−1 · f
1 − (1 − f )l−1 .

Similarly, we can compute the probability that server s j
1 at layer j of another message b1

route is the rightmost on its path. This allows us to compute the probability that i0 < j1
by iterating over all indexes 1 ≤ i0 < l − 1 and 1 < j1 ≤ l − 1.

Next, we would like to evaluate the probability that i1 < j0 given some leftmost
index i0 for a0 and rightmost index for b1. This probability is dependent on the previous
indexes i0 and j1. More specifically, the following relation between indices must hold:
i0 < j0 ≤ l − 1 and 1 ≤ i1 < j1. So to compute the probability for a specific index i
given that we’ve already fixed the rightmost server j we need to calculate:

Pr[si
m honest ∧ ¬si′

m, i
′ < i < j | some server honest] (2)

The computation of Equation 2 is identical to that of Equation 1. This allows us to
compute the probability for honest server indices i0, i1, j0, j1 such that i0, i1 < j1∧i0, i1 <
j0 by iterating over all options for the four indexes and summing the probability mass
over each option that satisfies these conditions.
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Existence of single-access noise messages n0, n1. The remaining condition for ob-
taining optimal indistinguishability is that there is some single-access noise message
generated by an honest server that routes through server si0

0 and s j1
1 , and that there

exists a similar message that routes through si1
0 and s j0

1 . Let us consider the number
of single-access noise messages routed via si0

0 to s j1
1 . The number of messages dis-

tributes Pois( h
N λ1), and the probability that no message routes through that link is thus

Pois(0, h
N λ1). For example, for h = 80,N = 100, λ1 = 50, this probability is 2 · 10−22.

We similarly compute the probability that there exists another noise message n1 that
routes through si1

1 and s j0
0 .

Probability for indistinguishable swap To find the probability that a0 and b1 can be
indistinguishably swapped, we multiply the probabilities as indicated above. To get
indistinguishability, we could also swap messages a1 and b0, which take an independent
route from a0 and b1, and therefore have equal probability to failing to swap a0 and b1.
The overall probability that we fail to make Alice talking with Bob indistinguishable
from Alice being idle is:

Pr[can’t swap a0, b1] · Pr[can’t swap a1, b0]

D Message loss and differential privacy
We first consider the active attacker’s best strategy.

Theorem 9. The active attacker’s best strategy (leaking the most information) is to
either discard both messages from Alice, or both messages from Bob.

Proof. Let us enumerate the attacker’s strategies, regarding the four messages from
Alice and Bob.

Discard three messages. If the attacker discards three messages, he leaves only one
message for Karaoke to process (either from Alice or from Bob). In this case, clearly
the message would create a single-access to a dead drop, so this strategy leaks no
information.

Discard one message. Assume that the attacker discards Alice’s a0. Alice’s a1 and
Bob’s b0 are likely to follow paths that satisfy the premise of Theorem 4, and therefore
Karaoke is likely to leak no information despite the active attack.

Discard two messages, one from Alice and the other from Bob. In this case, the
attacker leaves with probability 1

2 either the pair of messages a0, b1 or a1, b0 (i.e., a pair
of messages which can be indistinguishably swapped). So this strategy dominates the
previous one, but is still very likely not to provide any information to the adversary.

Discard two messages, both either from Alice or from Bob. Consider our adjacent
instances (defined in Theorem 1). If Alice and Bob are talking, then there will be two
single accesses to dead drops. If they are idle, then there will be one double-access. The
two different statistical signals leak statistical information to the adversary (bounded
through differential privacy). □
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Before we delve into the proof of the next theorem, Theorem 8, let us evaluate the
probability that its premise holds.

Lemma 10. The conditional in Theorem 8 holds with overwhelming probability in the
route length parameter l.

Proof. Consider a message m sent by an honest user. The probability that the condi-
tional does not hold for m is the probability of having zero or one honest servers in m’s
route. Namely, Binomial-CDF(1, l). So the conditional holds for m with probability
1−Binomial-CDF(1, l). The attacker leaves two messages, and we would like the condi-
tional to hold for both of them, this happens with probability (1 − Binomial-CDF(1, l))2

which is overwhelming in l. For example, with a route length l = 16, assuming 80% of
the servers are honest, this conditional holds with probability 8 · 10−10. □

To prove differential privacy, we show that the following properties about Karaoke’s
route selection hold.

Lemma 11. Karaoke’s route selection algorithm is indistinguishable given the attacker’s
observations from a route selection algorithm that provides the following two properties.

1. For i < l− 1, given the servers selected for layers 1, . . . , i that a message takes, all
servers have equal probability for routing the message at layer i + 1.

2. If the user had drawn the exact same sequence, except for hop i, then all servers
after hop i would be different.

Proof. Consider the following route selection algorithm, which satisfies the two proper-
ties in Lemma 11:

1. For hop i ∈ [1, l − 1] they draw si ∈R [1, . . . ,N].

2. The selected server for hop i is indexed by
∑i

j=1 s j mod N.

Since the chance of selecting any next-hop server in the above algorithm is equal
(even given the selection of servers in previous hops), this route selection algorithm is
indistinguishable from the uniformly selecting the server at each hop as performed by
users in Karaoke. □

Analysis outline. The analysis is organized as follows. Consider a user sending a
message m1 through two honest servers. The adversary can track m1 until it arrives
at si

m1
, the first honest server on the message’s route. While the adversary does not

know through which of the N outgoing links from si
m1

the message m1 routes from,
he can infer on m1’s next hop by observing the volume of messages on each of si

m1
’s

outgoing links. Ideally, m1 should have a uniform probability for distributing to any of
the next hop servers even given these attacker observations. We term these probabilities
as m1’s “distribution probabilities” following the notations in [25] and bound them
using differential privacy (the noise on every outgoing link distributes Pois(Nλ1 +Nλ2));
showing that they are close to uniform.

Let us assume that the attacker knows what would the next honest server be if m1
were to route through link j from si

m1
(for any j), call this second server s j

m1 . Given s j
m1 ,
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also assume that the attacker can trace messages leaving s j
m1 to their dead drop. The

attacker can therefore learn the single access-count of messages exiting s j
m1 , which is

noised with distribution Pois(N2λ1).
We perform a similar analysis for the user’s other message, m2. The attacker can

monitor m2 and find the single access count of messages exiting from s j
m2 (for any j).

Finally, the attacker can observe the double access count to dead drops, where one
message leaves from s j

m1 and the other from s j
m2 . The double access count for noise

messages leaving s j
m1 and s j

m2 distributes Pois(Nλ2).
Given these noise distributions, we compute the differential privacy guarantees for

changes of +1 and -1 in the single- and double-access counts.
Our analysis has the following outline. §D.1 evaluates the distribution probabili-

ties, then §D.3 and §D.4 analyze differential privacy with respect to the two adjacent
databases in Theorem 1.

D.1 Distribution probabilities
Let us assume that a sender routes their message through honest server s and its outgoing
link i. The adversary observes the volume of messages on each of s’s N outgoing links,
and can use these observations to try to infer the sender’s message outgoing link. We are
interested in learning the probability that the attacker observations on s’s outgoing links
are exactly the same if that user were to route their message on some other outgoing link
of server s, link j , i. Denote by αi the number of messages that travel over link i. In
the adjacent instance, we have one link that gets one less message (link i), and one link
that gets one additional message (link j). We analyze both cases in terms of differential
privacy and then compose them together.

Denote λ = Nλ1 + Nλ2 to simplify notation. So the amount of noise over each link
distributes Pois(λ) (see discussion in §C).

D.1.1 Link to i gets one less message
We want to bound∑

i

Pr[msg moved from link i] Pois(αi − 1, λ)
∏
x,i

Pois(αx, λ).

Since the user chooses the link at random out of N possible options, the above equals:

1
N

∑
i

Pois(αi − 1, λ)
∏
x,i

Pois(αx, λ).

Notice that Pois(αi − 1, λ) = λ
αi−1e−λ
α−1! =

αi
λ

Pois(αi, λ). Therefore, the above sum is equal
to:

1
N

∑
i

αi

λ

∏
x

Pois(αx, λ) =
1

Nλ

∑
i

αi

∏
x

Pois(αx, λ).

We notice that since Poisson is additive,
∑

i αi ∼ Pois(Nλ). Let c− > 0 be some cutoff
point, and assume that

∑
i αi ≤ Nλ + c− ·

√
Nλ. Namely,

∑
i αi is less than c− standard

deviations above the mean of its distribution. (The probability that this does not hold is
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our delta, the value c− allows to tradeoff higher epsilon for lower delta.) In this case we
get that our term is upper bounded:

≤
1

Nλ
(Nλ + c− ·

√
Nλ)
∏

x

Pois(αx, λ)

= (1 +
c−
√

nλ
)
∏

x

Pois(αx, λ)

Hence,

ϵ− = ln(1 +
c−
√

Nλ
), and δ− = 1 − PoisCDF(Nλ,Nλ + c− ·

√
Nλ)

D.2 Link j gets one more message
We want to bound:∑

j

Pr[msg moved to link j] Pois(λ, α j + 1)
∏
x, j

Pois(αx, λ)

=
1
N

∑
j

Pois(λ, α j + 1)
∏
x,i

Pois(αx, λ)

Notice that Pois(α j + 1, λ) = λα j+1e−λ
α+1! = λ

α j+1 Pois(λ, α j). Therefore, the above sum
equals:

1
N

∑
j

λ

α j + 1

∏
x

Pois(αx, λ) =
λ

N

∏
x

Pois(αx, λ)
∑

j

1
α j + 1

The random variable
∑

j
1
α j+1 has mean N

λ+1 . This allows us to probabilistically bound∑
j

1
α j+1 using the Chernoff bound. Let c+ > 0 such that

∑
j

1
α j+1 ≤

N
λ+1 + c+

√
N
λ+1 =

(1 + c+
√
λ+1
N ) N

λ+1 . We upper bound:

λ

N

∏
x

Pois(λ, αx)
∑

i

1
α j + 1

≤
λ

N

∏
x

Pois(λ, αx)(1 + c+
√
λ + 1

N
)

N
λ + 1

=
λ

λ + 1
(1 + c+

√
λ + 1

N
)
∏

x

Pois(λ, αx)

Maximum and minimum belief probabilities. Summing up the epsilons and deltas,
we get that our belief epsilon ϵ = ϵ+ + ϵ− and δ′ = δ+ + δ−. This allows us to bound
with probability 1 − δ the highest belief probability to be pmax =

eϵ
n , and the lowest one

to be pmin =
1

n−1+eϵ .
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D.3 Alice talks to Bob, but claims “idle”
Assume without loss of generality that the attacker drops the two messages from Bob
(according to Theorem 9), so Karaoke handles Alice’s messages a0 and a1. The attacker
can follow the messages a0 and a1 to the first honest server on their path, and has some
distribution probabilities (bounded by pmin, pmax) on the next link from that server. Our
analysis strategy, outlined earlier, allows the adversary to identify the last honest server
handling a message if that message were routed through any of the outgoing links from
the first server.

In this scenario Alice talks with Bob and wants to claim that she is idle. In this case,
two dead drops are accessed only once (from Alice’s a0 and a1), but need to appear as
a double access. To provide the same observations to the attacker in the neighboring
database, the single access noise needs to increase and the double access noise needs to
decrease. We compute the epsilon/delta for a change of +1 in the single dead drop access
count and -1 in the double access dead drop count, and then compose two changes of
the former and one of the latter.

D.3.1 Single-access noise increased by 1
The amount of single access noise messages that an honest server relays distributes
Pois(N2λ1). Denote by αi the number of single-access messages from server si. We
want to bound:∑

i

Pr[m routes via link i] Pois(αi + 1,N2λ1)
∏
x,i

Pois(αx,N2λ1)

Let s j be the honest server that Alice’s message is most likely to had gone through,
i.e., with probability ≤ pmax (given the attacker observations on the first honest server in
the message’s route). Using the bounds on distribution probabilities computed in §D.1
and Lemma B.3 from [25], we can upper bound this sum by:

pmax · Pois(α j + 1,N2λ1)
∏
x, j

Pois(αx,N2λ1)

+ pmin ·
∑
i, j

Pois(αi + 1,N2λ1)
∏
x,i

Pois(αx,N2λ1) (3)

Notice that,

Pois(αi + 1,N2λ1) =
(N2λ1)αi+1e−N2λ1

(αi + 1)!
=

N2λ1

αi + 1
Pois(αi,N2λ1)

Therefore, the sum in Equation 3 equals:

pmax
N2λ1

α j + 1

∏
x

Pois(αx,N2λ1) + pmin

∑
i, j

N2λ1

αi + 1

∏
x

Pois(αx,N2λ1)

= N2λ1

pmax
1

α j + 1
+ pmin

∑
i, j

1
αi + 1

∏
x

Pois(αx,N2λ1) (4)
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The variables α j distribute Poisson with mean N2λ1. Using the Poisson differential
privacy analysis (see [25]), we can lower bound the random variable α j with probability
1 − δmax, and therefore upper bound 1

α j+1 . For a cutoff point cmax > 0 of the Poisson
differential privacy, we get:

1
α j + 1

≤
1

N2λ1 − cmax

√
N2λ1 + 1

For example, when N = 100, λ1 = 3, we can use cmax = 5.5 so that except with
probability 10−8, it holds that the random variable 1

α j+1 is upper bounded by

1
α j + 1

≤
1

N2λ1 − 6.6
√

N2λ1 + 1

The random variable
∑

i, j
1
αi+1 has mean N2−1

N2λ1+1 . This allows us to probabilistically

bound
∑

i, j
1
αi+1 using the Chernoff bound. Let cmin > 0 such that

∑
i, j

1
αi+1 ≤

N2−1
N2λ1+1 +

cmin

√
N2−1

N2λ1+1 . We upper bound with probability 1 − δmin:

pminN2λ1

∑
i, j

1
αi + 1

∏
x

Pois(αx,N2λ1)

≤ pminN2λ1

 N2 − 1
N2λ1 + 1

+ cmin

√
N2 − 1

N2λ1 + 1

∏
x

Pois(αx,N2λ1)

For example, for N = 100, λ1 = 3, we can set δmin = 10−8 and find that we can use
cmin = 0.038.

The bounds given in our analysis above do not hold with probability δ+1 = δmax+δmin+

δdistribution. Where δdistribution describes the delta given in the distribution probabilities
analysis (§D.1). We next substitute the above probabilistic bounds in Equation 4 to
compute ϵ+1 , i.e., the differential privacy epsilon when the single access count increments
by 1:

ϵ+1 = ln

pmax
N2λ1

N2λ1 − cmax

√
N2λ1 + 1

+ pminN2λ1

 N2 − 1
N2λ1 + 1

+ cmin

√
N2 − 1

N2λ1 + 1




D.3.2 Double-access noise decreased by 1
We now have two messages, m1 and m2 whose last honest servers are si, s j (the attacker
does not know i, j, but has some information on them which is captured by the distribu-
tion probabilities). The double access noise where one message is from si and the other
from s j distributes Pois(Nλ2). Denote by βi, j the number of double-access messages
from server si and s j. We want to bound:∑

i, j

Pr[m1 via i]Pr[m2 via j] Pois(βi, j − 1,Nλ2)
∏

x,y,i, j

Pois(βx,y,Nλ2) (5)
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Using the distribution probabilities pmin, pmax, and Lemma B.3 from [25], we can
upper bound the sum in Equation 5 as follows. Let sa(sb) be the second honest server
that Alice’s (Bob’s) message is most likely to be routed through.

pmax

∑
j

Pr[m2 via j] Pois(βa, j − 1,Nλ2)
∏

x,y,a, j

Pois(βx,y,Nλ2)

+ (N − 1)pmin

∑
i,a

∑
j

Pr[m2 via j] Pois(βi, j − 1,Nλ2)
∏

x,y,i, j

Pois(βx,y,Nλ2)

≤ pmax

pmax Pois(βa,b − 1,Nλ2)
∏

x,y,a,b

Pois(βx,y,Nλ2) + pmin

∑
j,b

Pois(βa, j − 1,Nλ2)
∏

x,y,a, j

Pois(βx,y,Nλ2)


+ (N − 1)pmin

∑
i,a

pmax Pois(βi,b − 1,Nλ2)
∏

x,y,i,b

Pois(βx,y,Nλ2) + pmin

∑
i, j,a,b

Pois(βi, j − 1,Nλ2)
∏

x,y,i, j

Pois(βx,y,Nλ2)


(6)

Notice that Pois(βi, j − 1,Nλ2) = (Nλ2)βi, j−1e−Nλ2

βi, j−1! =
βi, j

Nλ2
Pois(βi, j,Nλ2). Therefore, the

above is equal to,

p2
max
βa,b

Nλ2

∏
x,y

Pois(βx,y,Nλ2)

+ pmax pmin

∑
j,b

βa, j

Nλ2

∏
x,y

Pois(βx,y,Nλ2)

+ pmax pmin

∑
i,a

βi,b

Nλ2

∏
x,y

Pois(βx,y,Nλ2)

+ p2
min

∑
i, j,a,b

βi, j

Nλ2

∏
x,y

Pois(βx,y,Nλ2)

which equals:p2
max
βa,b

Nλ2
+ pmax pmin

∑
j,b

βa, j

Nλ2
+ pmax pmin

∑
i,a

βi,b

Nλ2
+ p2

min

∑
i, j,a,b

βi, j

Nλ2

∏
x,y

Pois(βx,y,Nλ2)

(7)
In the first term of the parenthesized sum above, there is just one element, we

upper bound it using the ϵ, δ differential privacy guarantees of the Poisson distribution
(see [25]). The second and third terms sum together 2(N-1) Poisson random variables.
The forth term sums (N − 1)2 Poisson random variables. Notice that the sum of
independent Poisson random variables also distributes Poisson. The analysis in §D.1
and the analysis in [25], leverage this property to tightly upper bound the sum of Poisson
random variables; we use the same technique here to probabilistically upper bound
the four terms in the sum above. Our four bounds hold, except with probabilities
δ1, δ2, δ3, δ4 (given by the differential privacy analysis for each of the four terms). We
therefore get an overall delta for a change of -1 in the double access count:

δ−2 = δ1 + δ2 + δ3 + δ4 + δdistribution

We find the corresponding ϵ−2 by replacing each term with its upper bound in Equation 7.
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D.3.3 Composition over multiple observable variables
To find the differential privacy guarantees for the case where Alice talks to Bob but
claims to be idle, we compose two +1 changes to the single access count (§D.3.1) and a
-1 change to a double access count (§D.3.2). Therefore, we have:

ϵ = ϵ−2 + 2 · ϵ+1
δ = δ−2 + 2 · δ+1

D.4 Alice idle, but claims “talking with Bob”
The attacker’s best strategy is to drop either two messages from Alice or two messages
from Bob (Theorem 9). Assume without loss of generality that the attacker discards
both of Bob’s messages. In this scenario Alice is idle and wants to claim not talking,
then one dead drop is accessed twice (from Alice’s a0 and a1), but it needs to appear
as two single accesses in the neighboring database. To provide differential privacy, we
require that the event where the double-access noise between the last honest servers in
a0 and a1’s route would decrease by 1 be ϵ+2 , δ

+
2 differentially private. Furthermore, the

event where the single access counts from a0 and a1 last servers would increase by 1 is
ϵ−1 , δ

−
1 differentially private. We compute ϵ+2 , δ

+
2 and ϵ−1 , δ

−
1 similarly to §D.3, and obtain

the differential privacy guarantees:

ϵ = ϵ+2 + 2 · ϵ−1
δ = δ+2 + 2 · δ−1
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